

Dimensions


## C $\epsilon$

## Order Code

UB4000-F42-E6-V15

## Features

- 2 independent switch outputs
- Extremely small unusable area
- TEACH-IN
- Interference suppression (adjustable width of sound cone in close range)
- Temperature compensation
- Synchronisation options
- NO/NC selectable


## Electrical Connection

Standard symbol/Connections:
(version E6, pnp


[^0]
## Connector V15

Technical Data

| General specifications |  |
| :---: | :---: |
| Sensing range | $200 . . .4000 \mathrm{~mm}$ |
| Adjustment range | 240 .. 4000 mm |
| Unusable area | 0 ... 200 mm |
| Standard target plate | $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ |
| Transducer frequency | approx. 85 kHz |
| Response delay | approx. 325 ms |
| Indicators/operating means |  |
| LED green | permanently green: Power on |
| LED yellow 1 | permanent: switching state switch output 1 flashing: TEACH-IN function |
| LED yellow 2 | permanent: switching state switch output 2 flashing: TEACH-IN function |
| LED red | normal operation: "fault" TEACH-IN function: no object detected |
| Electrical specifications |  |
| Operating voltage | 10 ... 30 V DC , ripple $10 \%$ ss |
| No-load supply current $\mathrm{I}_{0}$ | $\leq 60 \mathrm{~mA}$ |
| Input/output |  |
| Synchronisation | bi-directional <br> 0 level $-U_{B} \ldots+1 \mathrm{~V}$ <br> 1 level: +4 V...+U $\mathrm{U}_{\mathrm{B}}$ <br> input impedance: > 12 KOhm <br> synchronisation pulse: $\geq 100 \mu \mathrm{~s}$, synchronisation interpulse period: $\geq 2 \mathrm{~ms}$ |
| Synchronisation frequency |  |
| Common mode operation | $\leq 13 \mathrm{~Hz}$ |
| Multiplex operation | $\leq 13 / \mathrm{nHz}, \mathrm{n}=$ number of sensors |
| Output |  |
| Output type | 2 switch outputs pnp, normally open/close selectable |
| Rated operational current $\mathrm{I}_{\mathrm{e}}$ | 200 mA , short-circuit/overload protected |
| Default setting | Switch point A1: 240 mm , Switch point A2: 4000 mm , wide sound lobe |
| Voltage drop $\mathrm{U}_{\mathrm{d}}$ | $\leq 2.5 \mathrm{~V}$ |
| Repeat accuracy | $\leq 0.5$ \% of switching point |
| Switching frequency f | $\leq 1.2 \mathrm{~Hz}$ |
| Range hysteresis H | $1 \%$ of the set operating distance |
| Temperature influence | $\pm 1 \%$ of full-scale value |
| Standard conformity |  |
| Standards | EN 60947-5-2 |
| Ambient conditions |  |
| Ambient temperature | $-25 \ldots 70^{\circ} \mathrm{C}(248 \ldots 343 \mathrm{~K})$ |
| Storage temperature | $-40 \ldots 8{ }^{\circ} \mathrm{C}$ (233 ... 358 K$)$ |
| Mechanical specifications |  |
| Protection degree | IP54 |
| Connection | connector V15 (M12 x 1), 5 pin |
| Material |  |
| Housing | ABS |
| Transducer | epoxy resin/hollow glass sphere mixture; foam polyurethane, cover PBT |
| Mass | 150 g |

## Functional description

The sensor can be completely parameterised using 2 keys on the side of the housing. One special feature of this sensor is the option of adapting the ultrasonic beam width to the ambient conditions at the place where the sensor is used.

## Teach-in of switching points:

Teach-in of switching points is used to determine the points at which the switching outputs will change their state. In addition, the order of switching points A1 < A2, or A1 > A2 also determines the effective direction (normally closed/open function) of the window in the output function (operating mode) "Window + Switching point" (see below).

| Teach-in of switching point A1 with key A1 |  |
| :--- | :--- |
| Press key A1 >2 seconds | The sensor goes into learning mode for switching point <br> A1 |
| Position the target object at <br> the desired distance | The sensor indicates by rapid flashing of the yellow <br> LED that the target object has been detected. If no ob- <br> ject is detected, the red LED flashes. |
| Press key A1 briefly | The sensor completes the Teach-in process for switch- <br> ing point A1 and stores the value in permanent memo- <br> ry. If the object is uncertain (red LED lit irregularly) the <br> Teach-in value is not valid. Teach-in mode closes. |

The process for Teach-in of switching point A2 is similar to what was described above, using key A2.
Special feature for output function "Window + switching point"
In the case of the output function (operating mode) "Window + switching point" (see below), switching points A1 and A2 define the window limits of switch output 1.
A third switching point A3 can also be defined here at which switch output 2 switches.

Teach-in of switching point A3 with keys A1 and A2
(only for operating mode window + switching point, see below)

| Press key A1 + A2 > 2 sec- <br> onds | The sensor goes into learning mode for switching point <br> A3 |
| :--- | :--- |
| Position the target object at <br> the desired distance | The sensor indicates by rapid flashing of the yellow <br> LEDs that the target object has been detected. If no ob- <br> ject is detected, the red LED flashes. |
| Press key A1 briefly <br> (output 2: normally closed) | The sensor completes the Teach-in process for switch- <br> ing point A3 and stores the value in permanent memo- <br> ry. <br> If the object is uncertain (red LED lit irregularly) the <br> Teach-in value is not valid. Teach-in mode closes. |
| or |  |
| Press key A2 briefly <br> (output 2: normally open) |  |

Parameter assignment of the output function and ultrasound beam width
If you press the A1 key while the power supply is being turned on and then hold it down for 1 second, the sensor goes into the two-level parameterisation of operating modes.

## Level 1, parametrisation of the output function

Pressing the A2 key briefly will cause the possible output functions to be selected
one after the other (depending on the last output function to be parameterised). The
Pressing the A2 key briefly will cause the possible output functions to be selected
one after the other (depending on the last output function to be parameterised). The functions are indicated by a flashing sequence of the green LED.

Teach-in for switching points can only be performed within the first 5 minutes after turning on the power supply. If the switching points need to be changed at a later time, this cannot be done until there is a new Power On.

Characteristic Curves/Additional Information

## Characteristic response curve



## Switching output programmation

## Accessories

MH 04-3505
Mounting aid
MHW 11
Mounting aid
V15-G-2M-PVC
Cable connector
V15-W-2M-PUR
Cable connector
$\mathrm{A} 1 \rightarrow \infty, \mathrm{~A} 2 \rightarrow \infty:$ Object presence detection.
Both outputs operate according to the selected mode,
if an object is located within the detection range.

output 1
output 1
output 2
output 2

Note:
$\rightarrow \infty$ means: cover transducer surface with your hand, while programming the output.
If A1 = A2, the output work like A1 < A2

put 1
 urface with your hand,

| Operating mode | Flashing sequence of green LED | A2 key |
| :---: | :---: | :---: |
| $2 \times$ normally open function (default) | Pause |  |
| $2 \times$ normally closed function |  |  |
| 2 switching points <br> n.o. (output 1) + <br> n.c. (output 2) | "ْ |  |
| Window (output 1) + switching point (output 2) | 舞 в ч |  |

Pressing the A1 key for 2 seconds saves the selected output operating mode. The parameter assignment process is then complete and the sensor returns to normal mode. If you press the A1 key briefly instead, you go to Level 2 (parameter assignment of ultrasonic beam range).

## Level 2, parameter assignment of ultrasonic beam width

The ultrasonic beam width can be adjusted to match the requirements of the application in Level 2.
Pressing the A2 key briefly will cause the possible beam widths to be selected one after the other (depending on the last beam width to be parameterised). The functions are indicated by a flashing sequence of the red LED.

| Beam width | Flashing sequence of red LED | A2 key |
| :---: | :---: | :---: |
| Narrow beam width |  |  |
| Average beam width |  |  |
| Wide beam (default) | 崄 |  |

Pressing the A1 key for 2 seconds saves the selected type of beam width. The parameter assignment process is then complete and the sensor returns to normal mode. If you press the A1 briefly instead, you go back to Level 1 (parameter assignment of output function).

If parameterisation is not complete within 5 minutes (pressing the A1 key for 2 seconds), the sensor interrupts parameterisation mode without changing the settings.

## Synchronisation

The sensor is equipped with a synchronisation connection to suppress mutual interaction. If it is not turned on, the sensor works at an internally generated cycle rate. Synchronisation of more than one sensor is possible in a number of different ways.
External synchronisation:
The sensor can be synchronised by the application of a square wave voltage externally. A synchronisation pulse on the synchronisation input results in the execution of a measurement cycle. The pulse width must be greater than $100 \mu \mathrm{~s}$. The measurement cycle must be started with the falling signal edge. A Low level > 1 s or an open synchronisation input results in normal operation of the sensor. A High level on the synchronisation input deactivates the sensor.
Two different operating modes are possible

- Multiple sensors can be controlled by the same synchronisation signal. The sensors work on synonymous cycle.
- Synchronisation pulses are sent cyclically to only one sensor each time. The sensors work in Multiplex mode.

Self synchronisation:
The synchronisation connections of up to 5 sensors with option for self-synchronisation are connected with each other. These sensors work after turning on the operating voltage in Multiplex mode. The On delay increases depending on the number of sensors to be synchronised. Synchronisation is possible during Teach-in and vice-versa. Sensors must be operated unsynchronised to perform Teach-in of switching points.

## Note:

If the option for synchronisation is not used, the synchronisation input can be connected with ground ( 0 V ) or the sensor can be operated with a V1 connection cable (4-pin).


[^0]:    Core colours in accordance with EN 60947-5-2.

